Analysis of stress distribution around total hip stems custom-designed for the standardized Asian femur configuration

نویسندگان

  • Jin Mu Jung
  • Cheol Sang Kim
چکیده

In total hip replacement (THR), bone resorption related to the foreign body reaction around the implant causes bonding failure at the bone-prosthesis interface and adversely affects the function and longevity of femoral implants. Stress shielding is thought to be one of the possible biomechanical factors that causes bone resorption, and is related to prosthesis design. We therefore investigated stress distribution at the bone-implant interface of implant models custom-fitted to Asian individuals, using a finite-element method. Based on the standard geometry of Asian femurs, we designed four different custom-fitted implant stems and applied boundary conditions, including a stationary loading of 1750 N. Even though stress shielding was observed for all four different prostheses, the custom-designed implant with a stepped groove in the proximal-medial region had the largest maximum principal stress distribution along paths on the bone-implant interface. This implant type also showed the highest maximum principal stress distribution at the proximal (0.308 MPa), mid (0.872 MPa) and distal (12.981 MPa) regions of the cortical surface of the femur. In conclusion, the implant design with a stepped groove in the proximal-medial region showed an overall increase in stress distribution due to minimization of stress shielding afforded by the reduced effective area in the bone-implant interface. Therefore, this hip implant type could be a possible geometry to remain functional over the long term in THR patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bone density study of the proximal femur after hip arthroplasty with porous-coated implants

Progressive loss of bone mineral density around the femora! component of total hip replacement continues to pose a threat to long term prosthetic survival. A linear study was undertaken to measure bone mineral density on a monthly basis following total hip arthroplasty in 11 male patients. The opposite femur was used as the control measurement. Bone mineral density was unchanged at two mo...

متن کامل

Finite Element Analysis of Different Hip Implant Designs along with Femur under Static Loading Conditions

Background: The hip joint is the largest joint after the knee, which gives stability to the whole human structure. The hip joint consists of a femoral head which articulates with the acetabulum. Due to age and wear between the joints, these joints need to be replaced with implants which can function just as a natural joint. Since the early 19th century, the hip joint arthroplasty has evolved, a...

متن کامل

Effect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis

This study aims to validate, using finite element analysis (FEA), the design concept by comparing the fatigue behavior of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials corresponding to different human activities: standing up, normal walking and climbing stairs under dynamic loadings to find out which of all these models have a better performance in...

متن کامل

Effects of fit and bonding characteristics of femoral stems on adaptive bone remodeling.

Bone atrophy caused by stress-shielding may cause serious complications for the long-term fixation of hip stems. In particular, uncemented total hip arthroplasty is threatened by this problem, because the stems are usually larger and, as a consequence, stiffer than those of cemented implants. In the present study, the effects of fit and bonding characteristics of femoral hip stems were investig...

متن کامل

Effect of femoral canal shape on mechanical stress distribution and adaptive bone remodelling around a cementless tapered-wedge stem

OBJECTIVES In total hip arthroplasty (THA), the cementless, tapered-wedge stem design contributes to achieving initial stability and providing optimal load transfer in the proximal femur. However, loading conditions on the femur following THA are also influenced by femoral structure. Therefore, we determined the effects of tapered-wedge stems on the load distribution of the femur using subject-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2014